
Agile Metrics

Dave Nicolette
Senior Consultant, Valtech Technologies

Definition:
Agile software development

An approach to software development
based on the values and principles
expressed in the Agile Manifesto.

http://www.agilemanifesto.org

Quantify
To express in quantitative terms or as
a numerical equivalent

Metric
A standard for measuring or evaluating
something; basis for asessment

Measure
A proportion, quantity, or degree

Definitions

http://www.yourdictionary.com

What is this about?

Measuring and tracking agile software
development projects.

 Why do we measure?
 What do we measure?
 How do we measure?
 Who cares?

Why do we write software?

So, what do we want to measure?

Why measure anything else?

A metric measures something of direct value
to the business

A diagnostic measures something about our
ability to produce the thing of value

Metrics versus Diagnostics

Pete Behrens, Trail Ridge Consulting

How can we use metrics*?

* in the strict sense

Uses for metrics (measures of business value)

 Understand real return on investment
 Plan market strategies, product releases,
and advertising campaigns
 Fail fast and minimize losses
 Identify and mitigate business risks
 Award bonuses to software developers

How can we use diagnostics?

Tell me how you are going to measure me
and I will tell you how I will behave.

Eliyahu Goldratt

- Eliyahu Goldratt

business value

diagnostic

informational

motivational

metrics

organizational goals

what

how well

how

management

Another view of metrics

Agile Thinking About Metrics

• Minimum necessary to stakeholders, and
no more.

• Every measurement has a purpose. (Don’t
measure something just because you can.)

• Measure outcomes, not outputs

• Measure work items completed, not time
spent per task.

• Assess trends, not snapshots

Who cares about software projects?

Team
member

Product
Owner

ScrumMaster

Project Manager

User

Executive

Auditor

Process
Improvement Researcher

Production Support

Timeframe of interest…

day - iteration
iteration - release
release - project
project - program
all

day - iteration

Team
member

Cares about…
technical quality
impediments

Scope of interest…

team
IT organization
business unit
enterprise
industry

team
team

day - iteration

Team Member

iteration - release

team
IT organization
business unit
enterprise
industry

business unitTimeframe of interest…

day - iteration
iteration - release
release - project
project - program
all

Cares about…
time to market
alignment with business needs

Scope of interest…

business unit

Product Owner

iteration - release

Product
Owner

Timeframe of interest…

project - program

team
IT organization
business unit
enterprise
industryday - iteration
iteration - release
release - project
project - program
all

Cares about…
compliance with regulations
traceability

Scope of interest…

enterprise

Auditor

Auditor

enterprise

project - program

Who cares about software projects?

Team
member

Product
Owner

ScrumMaster

Project Manager

User

Executive

Auditor

Process
Improvement Researcher

Production Support

Basic metrics for agile project teams
Principle
Working software is the primary measure of progress.

Measure
Running Tested Features (RTF)

Metric
Direct measure of delivered results.

Diagnostic
If flat or declining over time, a problem is indicated.

Motivational
Team members naturally want to see RTF increase.

Basic metrics for agile project teams
Principle
Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.

Measure
Earned Business Value (EBV)

Metric
Direct measure of delivered results.

Diagnostic
Trend should be an S curve; otherwise, problems in prioritization
or valuation are indicated.

Motivational
Team members like to deliver value because it makes them feel
they are contributing to the success of the organization.
Stakeholders are motivated to pay attention to the business value
of incremental releases.

Basic metrics for agile project teams
Principle
Our highest priority is to satisfy the customer through
early and continuous delivery of valuable software.
Measure
Burn
Metric
Direct measure of work remaining.
Diagnostic
Trends show scope changes and likely completion dates.
Motivational
Team members are motivated by seeing clearly when
they are likely to finish the project.

Basic metrics for agile project teams
Principle
Our highest priority is to satisfy the customer through
early and continuous delivery of valuable software.
Measure
Velocity
Metric
Direct measure of delivered results.
Diagnostic
Patterns in trends in velocity indicate various problems.
Motivational
Team members are encouraged and inspired by positive
feedback from the customer. They take pride in
achieving a high velocity and keeping it stable.

Basic metrics for agile project teams
Principle
Continuous attention to technical excellence and good
design enhances agility.
Measure
Static code analysis, test coverage
Metric
N/A
Diagnostic
Various direct and indirect indicators of code quality.
Motivational
Team members are motivated to keep the codebase
clean so that static code analysis results will indicate
high quality work.

Static Code Analysis Example

Static Code Analysis Example

cyclomatic
complexity

not covered
by tests

warns of
large methods

Financial Metrics for Agile Projects

Budget burn

 of interest to project managers, program
managers, and CIO
 tracks the use of budgeted funds over time
 says nothing about the value of the project

ROI calculation (budget basis)

 compares cost of delivery with project budget
 not “real” business ROI
 may show that the project team delivered at
lower cost than anticipated (or not)

What happened to...

 ...tracking team members’ time?

 ...tracking bugs and bug fixes?

Projecting Completion Dates

Initial projection based on:
• Team’s high-level sizing of overall scope
• Scope growth buffer (judgment call, 20% - 100%)
• New team? Iter 1 velocity will be about 60% normal
• Unfamiliar domain? 20% velocity hit in Iter 1
• Unfamiliar technology? 20% velocity hit in Iter 1
• Assume 20% improvement per iteration
• Use observed velocity from Iter 1 as starting point
• Plug assumed values for a few iterations, draw trend

Refine projection in each iteration as more is learned:
• More observations of actual velocity
• Better understanding of scope
• Improved team cohesion and collaboration

An additional challenge

Everett Rogers, 1983. This version: http://suewaters.wikispaces.com/Rogers

Organizational Differences
Traditional organization
Culture
Risk aversion, blame-shifting,
competition, zero-sum thinking,
fear of failure
Structure
Administrative separation
between application developers
and their customers
Management philosophy
Command-and-control,
Theory X, crack the whip
Teams
Temporary assignment, multiple
assignment, functional silos
Financial management
Cost-center mentality; Cost
Accounting

Agile/Lean organization

Risk management, trust,
transparency, collaboration,
failure as learning opportunity

Application developers work for
the lines of business they serve;
central IT is for central functions

Self-organizing teams, Theory Y,
enable and support people

Stable teams, dedicated teams,
cross-functional teams

Profit center mentality;
Throughput Accounting

Release Progress Report Card

Credit: Al Goerner, Management Consultant

Release Quality Report Card

Credit: Al Goerner, Management Consultant

Iterative Waterfall

Req’s Design Code TestQ Q Q

Repeat this pattern in each iteration:

inventory
(waste)

handoff
(waste)

Little’s Law

LT = WIP / ACR

LT = Lead Time
WIP = Work in Process (units)
ACR = Average Completion Rate (units per time period)

Story Cycle Time

The number of iterations it
takes to complete a story.

Einstein’s Wisdom

Metrics and Status Reporting

Don’t change slides yet!

Sample Scorecard
Value Delivery

Risks

Sample Scorecard
Delivery Effectiveness

Story Cycle Time: 2

Sample Scorecard

Software Quality

Customer satisfaction
Non-functional requirements
Testing metrics
 Coverage
 Tests passing
 Least-tested components
Static code analysis metrics
 Cyclomatic complexity
 Structural complexity
 Cyclic dependencies
Observational/calculated
 Defect density

Throughput Accounting & Agile Development
Inventory (V)
 raw materials Product Backlog, Story List

Investment (I)
 money sunk into Inventory cost of backlog creation

Operating Expense (OE)
 all costs other than Investment all costs other than backlog

 management, including
 direct labor

Throughput (T)
 sales price less OE project budget less OE

Net Profit (NP)
 T – OE T – OE

Return on Investment (ROI)
 NP / I NP / I

Sample Scorecard

Continuous Improvement

 Build frequency
 Escaped defects
 Use of TDD
 Big-bang refactorings
 Pairing time vs solo time
 Overtime
 Issues from Retrospective

Agile Balanced Metrics (Forrester)

Operational Excellence User Orientation

Business Value Future Orientation

• Project Management
• Productivity
• Organizational Effectiveness
• Quality

• User Satisfaction
• Responsiveness to needs
• Service Level Performance
• IT Partnership

• Business value of projects
• Alignment with strategy
• Synergies across business
 units

• Development capability
 improvement
• Use of emerging processes
 and methodologies
• Skills for future needs

Agile Project Scorecard (Ross Pettit)

Sample Agile Dashboard (VersionOne)

Sample Agile Dashboard (Serena)

Using Metrics as Process Diagnostics
Mature agile teams notice problems early;
they are alert to “process smells.” As for the rest...
 Don’t overreact to any single data point. Stuff
 happens (usually only once).
 Look for trends and for tell-tale patterns in the
 trends (it takes 3 data points to make a trend).
 Cross-reference more than one metric before
 drawing any conclusions.
 Use root cause analysis techniques to be sure
 you are fixing the right problem before you act.
Learn to recognize process smells. It’s quicker
 than relying on metrics.

Problematic Measures

Not relevant to agile methods:
 Gantt chart
 Percent complete

Gantt Charts and Agile Projects

Differences between traditional and agile methods:
 Work Breakdown Structure (WBS)
 Approach to project planning
 Iron Triangle management
 Big bang vs. incremental delivery

Example of a Gantt Chart

Traditional Development Approach
1. Define technical architecture

2. Define database

3. Develop persistence layer

4. Develop business logic layer

5. Develop presentation layer...etc.

Traditional WBS

1. Define technical architecture
 1.1. Task
 1.2. Task (depends on 1.1)
 1.2.1. Task
 1.2.2. Task (depends on 1.2.1)
 1.3. Task (depends on 1.2)
2. Define database
 2.1. Task
 2.2. Task (depends on 2.1)
3. Develop persistence layer (depends on 2)
 3.1. Task
 3.2. Task (depends on 3.1)
 etc.

Gantt for Traditional Project

1. Arch

1. DB

1. Pers.

1. Bus.

1. Pres.

1. UI

Agile Development Approach
1. Develop most important feature (per customer)

User Stories

Vertical slice through the architecture

2. Develop next most important feature

Build solution
incrementally

Gantt for Agile Project
1. User Story 1

1. User Story 2

1. User Story 3

1. User Story 4

1. User Story 5

1. User Story 6

1. User Story 7

1. User Story 8

1. User Story 9

1. User Story 10

1. User Story 11

Gantt Chart That Looks Reasonable...
1. Release 1

1. Iteration 1

1. Iteration 2

1. Iteration 3

1. Iteration 4

1. Release 2

1. Iteration 5

1. Iteration 6

1. Iteration 7

1. Iteration 8

...but doesn’t tell us anything useful.

Percent Complete (Traditional)

Task Estimate: 10 days

After 1 day: 10%
After 2 days: 20%
After 5 days: 50%
After 8 days: 80%
After 9 days: 90%
After 10 days: 90%
After 12 days: 90%
After 24 days: 90%
After 32 days: 100%Whew!
After 34 days: Bug report. Percent complete???

Percent Complete (Agile)

Known scope as of April 15: 500 points

Percent complete as of May 15: 38%
Percent complete as of June 15: 52%

Known scope after release 2 planning,
July 15: 900 points

Percent complete as of August 15: 35%

What? How can percent complete go down?

Percent Complete

For any methodology, you can always determine
the percent complete by looking at a calendar.

It is the percentage of the project schedule that
has passed as of the current date.

Percent complete is equally meaningless for
traditional and agile projects.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

